Evaluation of fungi and mycotoxins of smoked fish with special reference to some Aspergillus species.

*Flourage M. Rady, **Elsayed M. Abd- Elaaty

*Department of Mycology, Animal Health Research Institute, Shebin El koom Branch, Agriculture Research Center of Egypt.
**Department of Food Hygiene, Animal Health Research Institute, Shebin El koom Branch, Agriculture Research Center of Egypt.

ABSTRACT

A total of 100 samples of smoked herring fish, 50 samples of whole fish, and 50 fillets were collected from different shops in Menofea Governorate. The samples were examined mycologically for counting, isolation, and identification of mould. The mean averages of total mould count were $3.5 \times 10^5 \pm 1.14 \times 10^3$ cfu/g and $3.8 \times 10^4 \pm 0.62 \times 10^2$ cfu/g for whole fish and fillets respectively. The predominant isolated strain is Aspergillus species particularly $A. flavus$, $A. niger$, $A. fumigatus$ and $A. ochraceus$ with a total percentage of 74%. The concentration values of Aflatoxins B$_1$, B$_2$, and Ochratoxin A ranged between 0.096 ppb - 7.938 ppb, 0.075 ppb - 3.509 ppb, and 0.062 ppb – 1.219 ppb respectively. All samples are free from Aflatoxins G1 or G2. This study draws attention to the preparation and production of smoked herring fish to avoid possible health hazards from the Mycotoxins.

INTRODUCTION:

Fish is a major source of protein, particularly in Egypt. It is also an important source of vitamins, iodine and unsaturated fatty acids (Abolagba and Melle 2008). Fish is more susceptible to contamination, so it must go through some sort of processing or preservation. Otherwise, it will become unfit for ingestion by humans, and even after being treated, the fish may continue to be spoiled, especially if traditional procedures were applied (Oparaku and Mgbenka 2012, Shewan 2000). The technique of preserving food like fish involves several processes that prevent the growth of microorganisms such as the addition of growth-inhibiting substances or customized storage conditions by freezing or drying (Akise et al. 2013). For thousands of years, smoking has been applied to prepare and preserve food (Krasemann, 2004). Bad hygiene, insufficient cleaning, or preservation in open trays allow the fungal invasion, production of toxins, and spoilage of the product (Hassan et al. 2009 and Fredrick et al. 2016). During storage, the
growth of fungi such as Aspergillus, Rhizopus and Penicillium species was enhanced (Ayolabi and Fagade 2010). According to (Ayeloja et al. 2018), Aspergillus flavus, Fusarium oxysporum, Ceotrichium albidium, Rhizopus species, Penicillium species, and Trichoderma species were isolated from Nigerian smoked fish. Also, (Daramola et al. 2023) examined smoked fish samples mycologically revealed seven types of fungi namely, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Rhizopus species, Alternaria, Candida species, Mucor species.

In seafood, some fungal species are capable of producing mycotoxins as aflatoxins (AFs), Fusarium mycotoxins, and ochratoxins (OTs) (Nourbaksh and Tajbakhsh 2021 and Shamimuzzaman et al. 2022). Mycotoxins are stable based on their chemical structures, and it is difficult to remove them from the food chain (Huang et al. 2011). The International Agency for Research on Cancer (IARC) has designated aflatoxins as a class 1 human carcinogen because they are the most potent metabolite and because they are also extremely hepatotoxic, mutagenic, and genotoxic (IARC 2012). To ensure food safety, it is necessary to evaluate and quantify the metabolites in staple and vital food products given the harmful effects of aflatoxins on the human body, and also need to educate both the traders and the consumers on the risks involved in the consumption of such contaminated products.

MATERIAL AND METHODS:

1. Collection of samples:

Samples of smoked herring fish (n = 50), and smoked herring fillets (n = 50) were purchased from markets in the Menoufia governornate.

2. Preparation of the samples (AOAC, 2000):

The muscle of the smoked fish was thoroughly mixed and ground to obtain a uniform mass. The analysis was carried out as soon as possible or chilling the sample in the refrigerator to avoid decomposition.

3. Isolation of mould:

Ten grams (10g) of each sample was aseptically weighed into a sterile bottle containing 90 ml of sterile peptone water. The mixture was shaken vigorously using vortex mixer, and 5-fold serial dilutions were prepared (Samson et al. 2010). One milliliter of each dilution was dispensed in duplicate in sterile Petri dishes. Molten Saboraud dextrose agar to wincoorporated and phenicol (0.5g/l) had been incorporated was added to the Petri dishes, which were gently rotated, the plates were allowed to solidify and were incubated at 25°C for 3-7 days. The cultures were examined for growth at regular intervals and all observed colonies were subculture to obtain pure colonies, which were subsequently isolated and identified using morphological characteristics (Alkenz et al. 2015), macroscopy and microscopy (Ellis et al. 2007 and Samson et al. 2010).

4. Aflatoxins and Ochratoxin A1 determination:

4.1. Apparatus and Equipment:

High-performance liquid chromatography (HPLC) used for aflatoxin determination was an Agilent 1100 HPLC system, Agilen Technologies, Waldbronn, Germany, equipped with quaternary pump model G 1311A, UV detector (Model G 1314A) set at 254nm wavelength. Also, auto sampler (model G1329A VP-ODS) and Shim pack (150× 4.6 mm) column (Shimadzu, Kyoto, Japan) were used. The Chemstation Software program was used to integrate and record the data. Liquid nitrogen and ultra-high purity (99%) argon gas were adopted. The present study used Easi-Extract Aflatoxin immunoaffinity columns.

4.2. Standard Aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2) and Ochratoxin A (OCA) solutions:

The stock standard solutions of AFB1, AFB2, AFG1, AFG2 and OCA were prepared by dissolving the solid standard in benzene: acetonitrile (98:2, v/v). According to AOAC (2000), the precise concentration was measured by using a Shimadzu UV-1601 PC spectrophotometer, Shimadzu Scientific Instruments, Japan. The stock solution was prepared by using an intermediate standard solution in benzene:
acetonitrile (98: 2, v/v) at a concentration of 9.855 ng ml. This solution was used to elabo-
rate a calibration curve in the concentration range of 0.1 –9.8 ng/ml. All the solutions were
stored at -18°C in amber vials.

4.3. Quantitative determination of aflatox-
ins (European Council 2006):

4.3.1. Sample extraction:
In a blender, 50 g of the prepared homoge-
nized sample was mixed with 100 ml of ace-
tone and 100 ml of water for 10 min, 10 g of
diatomaceous earth was added and carefully
mixed for 5 min then filtered by using What-
man No. 1 filter paper. To prepare the mixture,
0.01 ml of the filtrate was added to a 500 ml
wide mouth glass stoppered Erlenmeyer vol-
metric flask. Then, 50 ml of 5% NaCl and 50
ml of hexane were added to the flask. The
flask was gently shaken for five minutes at a
speed of 2400 rpm on a mechanical shaker
(IKA, GmbH, Germany). The hexane layer
was discarded. After adding 50 ml of 5% NaCl
and 150 ml of chloroform (3x50 ml) to the
aqueous layer shake gently for 5 min each
time. The chloroform layer was collected from
the three extractions, dried over anhydrous so-
dium sulphate, and evaporated using a rotary
evaporator. The residues were re-dissolved in
1 ml chloroform.

4.3.2. Clean-up procedure:
After adding 2 ml of 0.5% aqueous acetic
acid to condition the column, the C18 column
was loaded with 1 ml of the filtered extract
and 4 ml of 0.5% acetic acid. Next, 0.5 ml of
20% Tetrahydrofuran (THF) in 0.5% aqueous
acetic acid was used to wash the column. 2 ml
of hexane was then added to the column tube,
which was subsequently dried under nitrogen.
After being cleaned with 3 ml of 25% THF in
hexane, the column tube was dried for 1 mi-

nute in nitrogen. The retained aflatoxins were
dried over a stream of nitrogen after being
eluted with 2x2 mL from 1% THF in meth-
ylene chloride. The dried aflatoxins were re-
constituted in 0.5 ml of toluene before the in-
jection in HPLC.

4.3.3. HPLC determination:
Each aflatoxin was determined with HPLC
at wave length 365 and 440 nm for excitation
and emission, respectively. The mobile phase
was composed of toluene, ethyl acetate, formic
acid, and methanol (90:5:2.5:2.5, v/v) which
was pumped with constant flow at 1.0 ml min.
20 ul of the reconstituted sample were injected
in the HPLC at 24°C to get the optimum reso-
lution of aflatoxins. Several blanks (methanol
only) and aflatoxin standard solutions were
injected. The assessment of the given samples
was done in triplicates and the sample was re-
garded as positive for aflatoxin, if its retention
time and peak corresponded to that of the
standard. Calculations to get the level of each
aflatoxin in the examined samples were carried
out automatically by Agilent Chem Station
Software System.

4.4. Quantitative determination of ochratox-
in A (Toscani et al. 2007):

4.4.1. Sample extraction:
An aliquot of 10 g of the prepared sample
and 100 ml of (chloroform: 85% orthophos-
phoric acid 100: 4, v/v) solution were mixed
and homogenized in a blender for 2 min. After
thoroughly filtering through Whatman No. 3
filter paper, sixty ml of the filtrate was trans-
ferred into a separating funnel and extracted
twice with 5 ml of (buffer 0.2 M Tris-
Hydrochloric acid: Acetonitrile 90:10, v/v).
The upper aqueous layer was carefully gath-
ered and well mixed.

4.4.2. Clean-up procedure:
Accurately, 50 ml of the aliquot was
passed through the Agilent ZORBAX C18 (3
µm, 2.1x250 mm) column for cleanup. The
column was washed by water and dried by air.
Ochratoxin A was eluted with 2 ml methanol
with a vacuum manifold. The methanol was
dried under gentile nitrogen stream and the
residue was re-dissolved in the mobile phase
(water: acetonitrile: glacial acetic acid 49.5:
49.5: 1.0) before the injection in HPLC.

4.4.3. HPLC determination:
Ochratoxin A was assessed at wavelength
380 and 440 nm excitation and emission, re-
spectively. The mobile phase was composed of
water: acetonitrile: and glacial acetic acid
49.5: 49.5: 1.0, which was pumped with constant flow at 1 ml/ min. Typically, the same techniques and steps used for the determination of aflatoxins were applied to estimate ochratoxin A automatically by Agilent Chem Station Software System.

5. Statistical analysis

The analysis of data for mould count in smoked herring fish and smoked herring fillet using student's t-test are significantly different at a confidence interval of 95% (p ≤ 0.05) and the result is expressed as mean ± SD.

RESULTS:

Table 1. Statistical analytical results of mould count (cfu/g) of examined whole (n=50) and fillet smoked herring (n=50)

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of +ve samples</th>
<th>% of +ve samples</th>
<th>Min. cfu/g</th>
<th>Max. cfu/g</th>
<th>Mean± SD. cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole smoked herring</td>
<td>43</td>
<td>86 %</td>
<td>3.25x10²</td>
<td>8.9x10⁵</td>
<td>3.5 x10⁴ ± 1.14 x 10³</td>
</tr>
<tr>
<td>Smoked herring fillets</td>
<td>33</td>
<td>66 %</td>
<td>4.5x10¹</td>
<td>6.2x10⁴</td>
<td>3.8 x10⁴ ± 0.86 x10³</td>
</tr>
</tbody>
</table>

Different letters are significantly different at p ≤ 0.05.

Table 2. Incidence of isolated mould in examined samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Whole smoked herring(n=50)</th>
<th>Smoked herring fillets(n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of +ve samples</td>
<td>% of +ve samples</td>
</tr>
<tr>
<td>Aspergillus species</td>
<td>37</td>
<td>74%</td>
</tr>
<tr>
<td>A. flavus</td>
<td>13</td>
<td>35.1%</td>
</tr>
<tr>
<td>A. niger</td>
<td>10</td>
<td>27%</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>7</td>
<td>18.9%</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>7</td>
<td>18.9%</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>10</td>
<td>20%</td>
</tr>
<tr>
<td>Mucor species</td>
<td>7</td>
<td>14%</td>
</tr>
</tbody>
</table>
Table 3. Determination of Mycotoxins by HPLC (microgram/Kg "ppb")

<table>
<thead>
<tr>
<th></th>
<th>Whole smoked herring(n=50)</th>
<th>Smoked herring fillets (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive samples</td>
<td>Positive samples</td>
</tr>
<tr>
<td>Aflatoxin B₁</td>
<td>10 20%</td>
<td>14 28%</td>
</tr>
<tr>
<td></td>
<td>Minimum 0.096</td>
<td>Minimum 0.118</td>
</tr>
<tr>
<td></td>
<td>Maximum 5.247</td>
<td>Maximum 7.938</td>
</tr>
<tr>
<td>Aflatoxin B₂</td>
<td>7 14%</td>
<td>10 20%</td>
</tr>
<tr>
<td></td>
<td>Minimum 0.075</td>
<td>Minimum 0.086</td>
</tr>
<tr>
<td></td>
<td>Maximum 2.561</td>
<td>Maximum 3.509</td>
</tr>
<tr>
<td>Aflatoxin G₁</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Aflatoxin G₂</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Ochratoxin A</td>
<td>7 14%</td>
<td>7 14%</td>
</tr>
<tr>
<td></td>
<td>Minimum 0.062</td>
<td>Minimum 0.105</td>
</tr>
<tr>
<td></td>
<td>Maximum 0.958</td>
<td>Maximum 1.219</td>
</tr>
</tbody>
</table>

Figure (1): HPLC chromatogram of aflatoxin B₁ A in the examined smoked herring sample (Negative)

Intensity (mAu) 0.00 ppb
Retention time (minutes)

Figure (2): HPLC chromatogram of aflatoxin B₁ A in the examined smoked herring sample (Positive)

Intensity (mAu) 7.938 ppb
Retention time (minutes)

Figure (3): HPLC chromatogram of aflatoxin B₂ A in the examined smoked herring sample (Negative)

Intensity (mAu) 0.00 ppb
Retention time (minutes)

Figure (4): HPLC chromatogram of aflatoxin B₂ A in the examined smoked herring sample (Positive)

Intensity (mAu) 2.561 ppb
Retention time (minutes)
DISCUSSION

Inadequate sanitation before and/or during the handling, processing, shipping, and storage of fish and fish products may result in mold contamination of fish and fish products (Hassan, 2003). Dried or smoked may contain a variety of pathogenic microorganisms as well as fungi that can cause public health issues through their secondary metabolites (mycotoxins).

Mycotoxins pose a serious hazard to human health, especially when they co-occur naturally, where they may be more toxic and carcinogenic than when they are present alone. Acute toxicity from ingesting large concentrations of some mycotoxins, including aflatoxins, can result in serious sickness or even death. Long-term exposure to these metabolites at high concentrations can potentially result in more severe health issues such as cancer, weakened immune systems, and liver and kidney damage (Al Jabir et al. 2019).

Results shown in Table (1) revealed that the prevalence of mycotic contamination in smoked herring fish and smoked herring fillets is 86% and 66% respectively. These results are slightly similar to those obtained by Ibrahim-Hemmat et al. (2017) who revealed that the incidence of mould in the examined packed herring fish samples was 83.3%. Also, Chinedu Adive et al. (2019) revealed that the incidence of fungal contamination of smoked dried fish ranged from 67.6 % to 84.8%. The results also agree with Aliyu et al. (2018) found that 84% of smoked-dried fish samples were contaminated with fungi.

The higher level of fungal contamination (100%) in smoke-dried fish samples was reported by Junaid et al. (2010), however, Job et al. (2016) reported that the fungal contamination ranged from 15% - 85%. And also, Abdel-Maksoud et al. (2010) reported that the mycotic contamination of smoked herring is 40.91% and 31.82% for mould and yeast respectively.

The high percentage of mycotic contamination in this study may be due to uncontaminated salt, poor packaging, careless handling, and bad storage conditions.

The data presented in Table (1) showed a significant difference at p ≤ 0.05 between smoked herring and fillet herring fish as the mean total mould count is $3.5 \times 10^5 \pm 1.14 \times 10^3$ cfu/g in smoked herring fish while the count is $3.8 \times 10^4 \pm 0.62 \times 10^2$ cfu/g in smoked herring fillets. These results are nearly similar to those
reported by Walter et al. (2020) who found that smoked dried fish sold in Bida markets were contaminated with a varying load of fungi ranging from 5.44x10^5 ±1.21x10^6 to 9.54x10^5 ±1.83 x10^6 cfu/g. The presented results agree with the results reported by (Mouir et al. 2011, Olayemi et al. 2012 and Ibrahim-Hemmat et al. 2017).

On the other hand, the mean values of total mould and yeast count of packed and unpacked smoked herring fish were 1.04x 10^2 ± 7.9 and 1.8x 10^2 ± 2.3 CFU/g. respectively (Khalifa and Mazyad 2009).

The mycological examination of the presented samples table (2) revealed that the predominant mycotic species was Aspergillus species with a percentage of 74% and 40% in smoked herring fish and smoked herring fillets respectively, followed by Penicillium species (20% and 16%) then Mucor species (14% and 10%). The results are similar to those reported by Foba et al. (2023) who said that the predominant species were Aspergillus of the Glaucus group (39%), Aspergillus niger (36%), and Penicillium sp. (25%). Ibrahim-Hemmat et al. (2017) showed the same results that 80% of examined un packed smoked herring fish samples were contaminated with Aspergillus species followed by Penicillium sp. (50%). Also, Abdoullahi et al. 2019, Fatima et al. 2021 and Daramola et al. 2023 reported the same results.

The data from Table (3) showed that the percentage of aflatoxins (B1 and B2) contamination of the examined whole smoked herring fish is 20% and 14% while 28% and 20% of smoked herring fillets are contaminated with aflatoxins (B1 and B2) respectively. The level of detectable aflatoxins (ranging between 0.075 - 7.938 ppb.) is below the permissible limits. These results are similar to the studies applied by Fatima et al. (2021) who reported that Aflatoxin B2, G1, and G2 were found at a range of 5.05 - 8.11 ppb in dried fish and meat from Ijebu-ode. Also, Indra and Elasto (2020) found that the concentration of aflatoxins ranged between 1.3 – 3.84 ppb in examined smoked dried fish in Zambia. Besides, Akinyemi et al (2011) reported that the concentration of aflatoxin in smoked dried fish samples ranged from 0.03 ppb to 1.15 ppb.

On the other hand, Saad et al. (2020) found that the examined fish products samples contained Aflatoxins B1, B2, G1, G2, and Ochratoxin A, with a high percentage of Aflatoxin B1(51.63 ± 4.82µg/kg) in smoked herring. Also, a high concentration of AFB1 is detected in smoked fish (Adebayo et al. 2008, Adesokan et al. 2016 and Fatima et al. 2021).

All analyzed samples were free from aflatoxins G1 and G2. The same results are reported by another authors (Abdoullahi et al. 2019). On the other hand, Saad et al. (2020) detected aflatoxin G1/kg and G2/kg in smoked herring with an average of 25.06 ±3.18µg/kg and 16.22±1.39µg/kg respectively. Also, Fagbohun and Lawal (2015) detected AFG1 in 50 smoked dried fish samples in a concentration between 2.01–3.53 µg/kg.

Aflatoxin G1 and G2 were detected below detectable limits in the samples of smoked fish (Fatima et al. 2021 and Saad et al. 2020)

The presented results showed that the concentration of ochratoxin A in both whole smoked herring and smoked herring fillets is 14% from the examined samples with an average between 0.062 ppb and 1.219 ppb. These results agreed with the results of Hassan et al. (2011). While the mean values of Ochratoxin A/kg were 6.52±0.74µg/kg in the smoked herring fish (Saad et al. 2020).

Egyptian standard of smoked fish (228/2005) stipulated that smoked fish should be free from any visible mould growth and their toxins, so 14% and 34% of examined smoked herring fish and herring fillet respectively are accepted for consumption.

CONCLUSION

In this study, we concluded that the most contaminated samples with mould were whole smoked fish as the most predominant isolated strain was Aspergillus species, particularly *A. flavus, A. niger, A. fumigatus,*
and A. ochraceus. Also, Aflatoxins B1, B2, and Ochratoxin A were detected while all samples were free from Aflatoxins G1 or G2. So, draws attention to the preparation and production of smoked herring fish to avoid possible health hazards from the mycotoxins.

REFERENCES

Ayolabi CI, Fagade EO. 2010. Mycological evaluation of smoked fish (Ethmalosa fimbriata) from retail outlets in Ago-Iwoye, Ogunstate, Nigeria 3 (2): 64 -68.

Ellis D, Davis S, Alexiou H, Handke R, Bart-

