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ABSTRACT 

A 
ntimicrobial resistance (AMR) is currently one of the most danger-
ous crises facing the world. There has been an unsettling rise in the 
antimicrobial resistance (AMR) identified in animals, which may 

transfer to people through direct contact, environmental pollution, and food 
consumption. Efficient poultry health and welfare management and quick 
diagnosis of bacterial infections in poultry farms can lessen the demand for 
antibiotics, which is reflected on the spreading of epidemics and AMR. In-
ternet of thinking and machine learning are branches of Artificial intelli-
gence that enable intelligent autonomous systems with human workers re-
motely managing operations. Machine learning technology plays a role in 
tracking and preventing infections in poultry farms, which can reduce the 
need for antibiotic treatment in poultry and, as a result, limit the transmis-
sion of antibiotic-resistant pathogens to humans. This information is further 
analyzed by powerful processing computers with the aid of massive storage 
devices to seek for trends and hints to pinpoint the locations of disease out-
breaks and cases of resistance. The utilization of this knowledge will make it 
easier to prevent epidemics in the future, reducing the demand for antibiot-
ics. Therefore, this review offers insight on the current AI practices in the 
management of poultry farms as well as opportunities and concerns around 
antibiotic resistance throughout the world. 
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INTRODUCTION 
Efficient poultry health and welfare man-

agement is crucial for preventing infectious 
diseases (Ojo et al. 2022). Poultry producers 
face several challenges, including high produc-
tion costs, lack of sufficient skilled labor, mor-
talities due to infectious diseases, rising of an-
tibiotic resistance, and inefficient resource 

management, such as water, feed, and electrici-
ty usage (Ojo et al. 2022). On this basis, the 
integration of the Internet of Things (IoT) and 
machine learning (ML) has been identified as 
promising technologies allowing intelligent 
autonomous systems with human workers re-
motely managing operations, smart poultry 
farming, data monitoring, and prescriptive ana-
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lytics that address the challenges (Fang et al. 
2021; Ojo et al. 2022). The internet of things 
(IoT) is a collection of physical sensing devic-
es such as cameras, microphones, and other 
sensors that linked to a wide area network 
(WAN) to collect, share, and convey infor-
mation for analysis purposes, whereas machine 
learning (ML) is a computational technique 
that combines analytics and learning to gener-
ate new insights (Michalski et al. 2013). The 
use of Artificial intelligence (AI) could lower 
the error rate to negligible levels, improving 
farming efficiency, and maximizing farm profit 
(Ribeiro et al. 2019; Ojo et al. 2022). AI has 
the potential to turn conventional industrial 
farming into smart poultry farming in the near 
future. (Astill et al. 2020; Ojo et al. 2022)  
 

Antimicrobial resistance (AMR) is one of 
the most critical challenges facing poultry pro-
duction (Lau et al. 2021; Rabaan et al. 2022). 
It is critical to implement an institutional anti-
biotic stewardship program that monitors cor-
rect antibiotic usage, and creates antibiograms 
to combat the rise in AMR rates and reduce 
antimicrobial misuse (Lau et al. 2021; Rabaan 
et al. 2022). These tools may aid in the rapid 
treatment of poultry without the need to wait 
for bacterial culture results (Rabaan et al. 
2022). AI can reduce the time to discover new 
antimicrobial drugs, enhance diagnostic and 
treatment accuracy, and lowering costs (Lau et 
al. 2021; Rabaan et al. 2022). 
 
Applications of internet of things in poultry 
farms: 

Figure 1 summarizes a holistic view of IoT 
applications in poultry welfare and health man-
agement in six parameters, including 1) remote 
management, 2) Behavior, body weight, and 
environment monitoring, 3) Disease predictive 
analytics, 4) Ammonia sensing 5) Audio sens-
ing, 6) Transportation and slaughtering. 

 
Remote management 

Labor shortages remain a primary challenge 
facing poultry production as production levels 
increase over time. (Zahniser et al. 2018). One 
way to address this challenge is to implement 
technological solutions that enhance capability 
to remotely manage and make decisions on the 

emerging issues (Park et al. 2022). Robots, 
drones and automated devices driven by sen-
sors and intelligent classifiers could perform 
most of the labor-intensive tasks such as aerat-
ing bedding removing mortality, materials 
picking up floor eggs in breeder houses, re-
moving litter, and applying vaccines, and disin-
fectants (Park et al. 2022). Drones are used to 
provide sensor data to ground robots for rapid 
response for current and emerging situations 
(Park et al. 2022). 
 
2- Behavior, body weight, and environment 

monitoring 

Automated monitoring was based on systems 
that remotely monitor chicken behavioral char-
acteristics, such as feeding, resting, and run-
ning, and environmental parameters, including 
temperature, relative humidity, ventilation, and 
lighting using IoT technologies, such as sen-
sors, cameras, microphones, and mobile 
phones connected to a server or cloud for in-
stant processing and visualization (Ojo et al. 
2022). Earlier researches highlighted the use of 
sensors to monitor environmental conditions, 
including temperature and humidity using the 
camera, supervisory control and data acquisi-
tion systems (SCADA) and IFAC Proceedings 
Volumes (Demmers et al. 2010; Fernandez et 
al. 2018; Lahlouh et al. 2020; Lorencena et 
al. 2020). Previous studies have monitored real
-time changes in body weights, feed and water 
consumption, and feed conversion ratio based 
on vocalization signals, machine learning, digi-
tal image analysis, and artificial neural network 
for optimization of poultry (Mollah et al. 2010; 
Fontana et al. 2015; Amraei et al. 2017; Li et 
al. 2020a; Li et al. 2020b; Huang et al. 2021). 
Rico-Contreras et al. (2017) monitored mois-
ture content in litters using artificial intelli-
gence techniques and Monte Carlo simulation. 
Zuidhof et al. (2017) improved feeding sys-
tems by making feed schedules based on the 
environmental, health, behavioral, and data of 
individual birds for better flock control and 
uniformity. 
 
3- Disease predictive analytics  

Early detection of infections has a signifi-
cant concern in the chicken industry to prevent 
disease transmission (Ojo et al. 2022). Disease-
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induced symptoms can be detected by monitor-
ing the behaviors of birds through accurate and 
robust biosensor in a real-time fashion (Ojo et 
al. 2022; Park et al. 2022). Artificial intelli-
gence can predict possible disease outbreaks 
before they occur and trace disease vectors and 
modes of transmission based on historical data, 
which improves early warning capabilities that 
could help prevent future outbreaks (Ojo et al. 
2022; Park et al. 2022). Autonomous robotic 
systems are quickly deployed to provide ap-
propriate interventions, remove diseased birds 
from the flock, or isolate a group of birds from 
others into separate space (Ojo et al. 2022). 
According to Usher et al. (2015), autonomous 
ground robots can be present in close contact 
with birds, allowing for direct assessment of 
infections. Several studies have brought tech-
nology regarding rapid detection and diagnosis 
of poultry diseases such as new castle disease 
virus, avian influenza, bursal diseases, salmo-
nella, hock burn, and listeria based on a chick-
en sound convolutional neural network and 
machine learning methods (Rizwan et al. 
2016; Zhuang et al. 2018; Golden et al. 
2019; Cuan et al. 2020). Different standard 
methods, including deep regression network, 
digital image processing, and deep learning 
were used for identifying diseased birds by 
analyzing eating behavior, movement, weight 
checking, and sound (Rizwan et al. 2016; 
Zhuang et al. 2018; Carpentier et al. 2019; 
Fang et al. 2020). Zhang and Chen (2020) 
developed autonomous detection system for 
diseased chickens based on the ResNet residu-
al network to track production performance. 

 
4- Ammonia sensing 

In 2019, (Lotfi et al.) developed a multi-
function electro-thermal sensor system for 
continuous ammonia level monitoring using a 
machine learning-based robust that has faster 
response times and lower power consumption 
and cost compared to traditional chemical sen-
sors. Xu et al. (2017a) developed a technolog-
ical solution to extract higher value nutrients 
from traditional wastes by using an adsorbing 
material to capture ammonia from chicken lit-
ter to be used as soil amendments. 
 

5- Audio sensing 

In 2018, (Carroll) developed auditory sys-
tems using digital signal processing, artificial 
intelligence, and machine learning techniques 
for assessing the illnesses, such as laryngotra-
cheitis and infectious bronchitis as well as 
bird’s response to stress due to temperature 
and ammonia. 
 
6- Transportation and slaughtering 

Traditional system of transportation of live 
birds can cause significant stress accumulation 
on birds, including physical discomfort, abnor-
mal social settings (Association 2016) 
(American Veterinary Medical Association, 
2016). Future poultry transportation systems 
can eliminate this stress accumulation and sig-
nificantly reduce the amount of manual han-
dling of live poultry (Park et al. 2022). Farm 
Processing and Transport (FPaT) is a system 
that consisting of two mobile units including 
processing trailer and transport trailer designed 
on standard 53-ft trailers, however, more in-
vestigation is needed on this system (Park et 
al. 2022). Some benefits of FPaT system have 
been reported, including reduced water use due 
to reduced scalding requirements and im-
proved the yield efficiency (Park et al. 2022). 
Furthermore, FPaT system causes no signifi-
cant differences in the major food quality ma-
trix, visual properties, myopathy scores, water-
holding capacity, yield, and texture properties 
compared to traditional techniques (Park et al. 
2022). Stunning and slaughtering activities that 
are currently carried out at the processing plant 
can be turned to the farm. Robots can herd the 
birds to a stunning station and shackle them 
(Park et al. 2022). A transportation system 
transports the shackled birds while tracking 
individual birds so that data gathered during 
the poultry management, such as health and 
weights may be transmitted to the processing 
plant (Park et al. 2022). 
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Fig 1. Application of IoT in poultry health and welfare management 

Machine learning  

Machine learning (ML) has been concerned 
with developing computer programs that use 
input information to produce either new 
knowledge or improve already existing 
knowledge (Michalski et al. 2013). ML-based 
approaches consist of feature extractors that 
convert raw data into feature vectors that clas-
sify patterns in the extracted features 
(Michalski et al. 2013; Park et al. 2022) (Fig 
2). In contrast, deep learning approach was 
derived from conventional ML approach that 
can automatically identify features from raw 
data without the need for notable engineering 
knowledge on feature extraction (LeCun et al. 
2015; Park et al. 2022). ML includes many 
learning models and algorithms and is classi-
fied as supervised, which uses labelled data to 
develop accurate predictions, and unsuper-
vised, which uses non-pre-assigned labels to 
identify datasets (Milosevic et al. 2019; Park 
et al. 2022).  
 
 

Applications of machine learning in poultry 
farms 

Several studies monitored different environ-
mental metrics, including temperature, humidi-
ty, carbon dioxide, and ammonia) using ML 
approaches such as linear regression, fuzzy 
logic, neuro-fuzzy, and deep learning (Mirzaee
-Ghaleh et al. 2015; Lahlouh et al. 2020; 
Küçüktopcu and Cemek 2021). Other ML 
techniques, including Lasso regression, fuzzy-
GA, and the generalized sequential pattern 
have been used in estimating the heat stress in 
commercial broiler houses (Hernández-Julio 
et al. 2020). Monitoring poultry welfare and 
behavioral activities are important parameters 
play role in improving the production (Ojo et 
al. 2022; Park et al. 2022). Linear regression 
and decision trees are two ML approaches 
used in monitoring behavioural and welfare 
activities (Neves et al. 2015; Li et al. 2020b). 
ML approaches including as linear regression, 
vector regression, and Bayesian artificial neu-
ral network have been applied for broil-
er growth estimation. (Mollah et al. 2010; 
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Fontana et al. 2015). Poultry diseases have an 
impact on poultry productivity, food safety, 
and zoonotic infections. Alex and Joseph 
(2019) assessed the effectiveness of different 
ML techniques in detecting avian influenza, 
including logistic decision, linear, and quadrat-
ic discriminant techniques. Other studies use 
ML techniques to detect avian influenza, in-
cluding maximum entropy, sequential pattern 
mining, random forest, deep learning, and as-
sociation rules (Xu et al. 2017b; Belkhiria et 
al. 2018; Zhuang et al. 2018; Cuan et al. 
2020). Two ML techniques, such as decision 

trees and deep learning have been used to pre-
dict infectious bronchitis (Rizwan et al. 2016). 
Other poultry diseases, including new castle 
disease and infectious bursal diagnosed by ML 
techniques using neural network and logistic 
regression techniques (Fang 2019; Okinda et 
al. 2019). In addition, other bacterial diseases, 
including Salmonella species and Listeria spe-
cies diagnosed by random forest and gradient 
boosting machines (Golden et al. 2019; 
Hwang et al. 2020). 

Fig 2. Application of machine learning in poultry health and welfare management 

Applications of machine learning in the 
identification of antibiotic resistant bacteria 

AI plays an important role in the control of 
antimicrobial resistance through the gathering 
of data to construct decision support systems 
that can aid in monitoring AMR trends, deter-
mining how to use antibiotics, designing new 
antibiotics, and investigating synergistic drug 
combinations (Boolchandani et al. 2019; 
Khaledi et al. 2016; Rodriguezet al. 2019).  
 

Deep learning and machine learning are AI 
subfields that use enormous amounts of data to 
solve issues; these data are then processed 

swiftly by powerful processing computers with 
the aid of massive storage devices (Rabaan et 
al. 2022). The construction of comprehensive 
AMR databases can integrate more cutting-
edge AI algorithms for more effective AMR 
prediction (Rabaan et al. 2022). 
 

Two methods of antimicrobial susceptibility 
testing have been used to diagnose AMR, in-
cluding antimicrobial susceptibility testing 
(AST) and whole-genome sequencing 
(WGSAST) (Isenberg 2003). Antimicrobial 
susceptibility testing (AST) is a traditional 
technique for estimating the level of antimicro-
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bial resistance; however, it is neither effective 
nor does it provide an explanation of how 
AMR works (Horne et al. 2015; Reller et 
al .2009). Whole-genome sequencing for anti-
microbial susceptibility testing (WGSAST) 
enables rapid, dependable, and accurate diag-
nosis of AMR; however, efficient information 
extraction requires vast and high-dimensional 
datasets (Boolchandani et al. 2019; Lunetta et 
al. 2004; Su et al. 2019).  
 

For the purpose of deducing hypotheses 
about novel AMR genes or mutation-variation 
pathways, machine learning models are created 
(Kavvas, et al. 2020). Monitoring of resistance 
genes can reveal emerging AMR trends and 
disclose transmission patterns that can aid in 
spotting and containing resistant disease out-
breaks (Rabaan et al. 2022). As the amount of 
whole-genome sequence data increases, AI 
models are better able to achieve high accuracy 
in surveillance (Deng et al. 2016, Argimón et 
al. 2020). AI models are able to learn features 
that have a significant influence, enabling the 
advance taking of important actions. Lv J et al. 
(2021) used AI algorithms methods for identi-
fication of AMR, including nave Bayes, deci-
sion trees, random forests, support vector ma-
chines, and artificial neural networks. Recent 
studies used a combined method of flow cy-
tometer antimicrobial susceptibility testing 
(FAST) and supervised machine learning to 
perform antimicrobial susceptibility testing 
and revealed generation of a reliable result in 
less than 3 hours (Mulroney et al. 2017; Inglis, 
et al. 2017) (Fig 3). Moreover, Lechowicz et 
al. (2013) reduced the amount of time to per-
form AST from 24 h to 30 min by developing 
an IR-spectrometer method that combines in-
frared (IR) spectroscopy with artificial neural 
network (Fig 3). Although the AI-based FAST 
or IR spectrometer method can speed up anti-
microbial susceptibility testing, their work-
flows are too complicated to be used by non-
professional personnel (Rabaan et al. 2022). 
Therefore, integrating the related AI algo-
rithms into FAST or IR spectrometer analytic 
software to realize automatic analysis is the 
direction in the near future (Rabaan et al. 
2022).   

 

For WGS-AST, current studies are mainly 
based on k-mer, which is derived from the 
whole genome of samples (Arango et al. 
2018). However, k-mer datasets are too large 
and redundant to be directly used for AI appli-
cations. Davis et al. (2016) converted k-mer to 
a binary matrix by rapid annotation using sub-
system technology (RAST), allowing use of 
this binary matrix to determine whether a par-
ticular k-mer is present in the genome (Fig 3). 

 
 Furthermore, Mahé et al. (2018) used the 

stability selection approach to generate a small 
predictive subset of k-mer from a very large 
number of redundant and correlated ones in-
stead of binary matrix, which could make the 
predictive model more efficient and easily in-
terpretable. The success of these methods is 
depended on the comprehensiveness and quali-
ty of the databases of specific antimicrobial 
resistance gene (ARG) and AST (Davis et al. 
2016).  
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Fig 3. Applications of machine learning in combating antibiotic resistance 

One of the challenges of the application 
WGS-AST model is that it requires a large 
training dataset to optimize its key parameters 
(Arango et al. 2018). Furthermore, it can 
work only for one specific species, it is neces-
sary for us to build up a comprehensive data-
base that can employ more advanced AI algo-
rithms, such as transfer learning (Weiss et al. 
2016) and, to develop a general WGS-AST 
model for multiple species with a small train-
ing dataset in the distant future.  

 
Furthermore, AI can identify new antibiot-

ics that are structurally different from current-
ly available ones and effective against a varie-
ty of bacteria (Weiss et al. 2016). There has 
been an explosion in research in recent years 
on the use of AI for drug design and discovery 
based on understanding of the structural basis 
of resistance, and rational design principle 
(Klevens et al. 2007). Application of AI can 
greatly cut the time needed for diagnostics 
from days to hours as well as it can be used to 
find new AMR and mutations (Melo et al. 
2021). However, there are some significant 
obstacles in the use of AI in AMR. For in-
stance, most programs do not take into ac-
count an intermediate category that overlaps 
the susceptible and resistant categories, only 
considering the output to be resistant or sus-
ceptible and this can result in a false diagnosis 
(Fischer et al. 2004). Also. the examination of 
antibiotic genes is linked mainly to univariate 
characteristics; however, it is well recognized 
that a number of factors contribute for detec-
tion of AMR, thus multivariate models must 

be developed (Teodoro and Lovis 2013). An-
other significant issue is data management; 
unbalanced data training could produce unreli-
able results. Research on the integration of AI 
with AMR is still in its early stages, and more 
findings must be made before widespread use 
can be considered.  
 
CONCLUSION  

D 
ue to the urgency of the AMR threat, 
this study enhances knowledge by as-
sisting stakeholders in better compre-

hending and utilizing cutting-edge digital tech-
nologies, critically analyzing the shortcomings 
facing poultry production, condensing the in-
fluence of predictive variables, and recogniz-
ing the potential uses and trends of technologi-
cal advancements in the field. Additionally, 
knowledge of technologies for managing the 
welfare of poultry and optimizing its produc-
tion process would make it easier to produce 
chicken at a cheap cost and of excellent quali-
ty. The first step towards decision-making is 
to apply AI in conjunction with appropriate 
explanatory models that can assist researcher-
led decisions and enhance antibiotic steward-
ship. Research on the integration of AI tech-
niques in the management of poultry farms 
and in the combating of AMR is still in its ear-
ly stages, and more findings are required be-
fore widespread use can be taken into consid-
eration. 
 

In Egypt, AI implementation for combat-
ing AMR in veterinary sector is still in its ear-
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liest stages, different pipeline strategies are 
offered by research laboratories and AI ven-
dors.  
 
 The synchronization of the three crucial 
components listed below is advised for 
Egypt's adoption of AI: 

1- Education, which includes training of 
veterinarians, laboratory workers, technolo-
gists, informaticists, and principal stakehold-
ers. This collaborative training includes anti-
biotic sensitivity procedures, interpretation, 
workflow management, and laboratory safety.  

2- Availability, accessibility, and sustain-
ability of infrastructure (broadband, cloud, 
servers, local area networks, and Wi-Fi). 

3- Regulations for data management, 
which govern how data should be anony-
mized, kept, accessed, transmitted, and pro-
cessed, interact with legal and ethical frame-
works. 

 

The introduction of AI synchronized with 
clinical education and infrastructure imple-
mentation. The deployment of AI in Egypt is 
fraught with difficulties. First, clear and thor-
ough data and observations from numerous, 
lengthy pilot AI and informatics platform in-
stallations, without data sharing and exchange, 
it might be impossible to develop AI for LMIC 
populations. As a result, data sharing is crucial 
to achieving health fairness. 

 
Second, the potential of economic imbal-

ance in AI is made worse by the absence of 
defined legal and regulatory frameworks for 
data rights. 

 
Finally, the requirement for a global AMR 

AI approach is dictated by significant differ-
ences in personnel, clinical experience, illness 
patterns, epidemiological distribution, digital 
infrastructure, and equipment. 
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